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genre, and decade; decades and years vary greaifya year or genre is overrepresented in the data.

by total word count and the number of availableThe reason both the standard deviation per
texts. This common corpus desigssue poses  number of sourceandper totalword count are
challenges if one wishes to maintain balance anghq|uded in the fithes&inctionis to take into

representativeness at the same time as taking intc?ccountthe effectsn expressionf large word
consideration equal sample sizes per decade with

s . count sourcesompared temall wordcount
an even distribution of texts of varying lengths. . . .
sourcesA theoretical optimal selection would

2.1 Combinatorial Optimization

This issue is

solution must be identified from a finite set of example, for a selection of the 1930s, we
possible solutions (Papadimitriou and Steiglitz, calculated f (x) as follows:
1998). Such issues arise, for instance, in supplyiumber of sources per year {1930: 31,

chain optimization Eskandarpour, Majid, et al. 1931:265,1932: 149,1933: 102,1934: 44,1935:

2015) or logistics (Sbihi anéglese, 2007), in 53 1936: 158,1937: 232,1938: 491,1939: 425}
which attempts are made to allocate a finite set oﬁumber of sources per genre {"NF”: 65

resources in the most efficient combination. "FIC" : 148,"MAG" : 1736}
2.2 Genetic Algorithms number of words per year {1930: 298006,

One solution to optimization problems in various 1931: 1420474,1932: 633197, 1933
domains is the application of genetic algorithms®02985,1934: 189769,1935: 254002,1936:
(GAS). For instanceGAs have been usefbr ~ 638916,1937:763989,1938: 630819,1939:
optimizationin businessportfolios (Chang et al, ~ 511100,}
2009; Oh, 2005) electric power dispatchin  number of words per genre {"NF”: 2001868,
engineering (Abido, 2006), and processor "FIC”:2001372,"MAG" : 2000017}
scheduling tasks in computer science (Hou et ale e per year = 159.5357
1994). GAs attempt to find optimal solutions & oo =941.7071
isneczilLrjz?nspa%e using prope_rtasfs’natural sel‘ectlon,. Géml count peryear) = 349638.6488
g gene mutatlgno and _ Obreedm%(wordCoumpergm):958'14421322332

(Goldberg, 2006). To simulate this natural .

: . L . [total word count - optimal word count| = 3257
selection, a fithess function is creat&ihfthaand ) )
Sathya, 2012)The fitness function can then be Fitness score is: 354077.6885
used to rank individuals during breeding and

allow higher ranked individuals to reproduce3 Methodology

more than others. The next generation then goegpo goal of this project was to come up with a

possible solution tthe optimization problerand
to test the effectiveness of this solution. As a case

through a similar process. Thigocessattempts
to identify incremental improvemés in each

generation. study, we used COHAecause ofts convenient
2.3 The Fitness Function in the Linguistic division into decades, its broad range of word
Domain counts of individual texts, and its variety of
genres. The project involved four steps:

In the linguistic domainhie lection
optimization problem can be mathematically
representetbllows:

"% (£(1))! herell (1! =

I ] : )

* (sources per yed): (sources per genre) algorithm with those of manual selection.
+! (word coun per year)"! (word count per genre )

+ [total word counbptimal word 3.1 Selection Criteria

count

As standard deviation shows the spread of data
from the mean, it is a useful measure to determine

produce a score of O for a selection with exactly 6
reminiscent of combinatorial Million words that also has an equal number of

optimization problems in which an optimal ~ Sources and word counts per year and geffioe.

establishing text selection t@tia, manually

selecting textghat meet these criteria as best as
possible, implementing a genetic algorithm to
select texts, and comparing the results of the

Criteria fa text selection were based dive
categories: word count per decade, word count
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per genre the number of texts per genre, the

per decade in COHA was 6 million wordmsed

The total word count of this decade in COHA is
6.9 million words, and 6 million was an eve
number divisible by three (i.e., the number of
genres represented in this decade in COHA)
Secondly, we determined that each decadeldh
contain texts from magazines, fiction, and non
fiction, and that each genre's word count should

be 2 million. Because the decades between 1820

phases; combinational breeding, mutation, fithess
number of texts per year, and word count per yeagvaluation. N randomized binary vector
We determined that the optimal total word countindividuals of length k are created at startup. The
individuals are then sorted based on fithess before
on the largest set of available texts in the corpusne first breeding occurs. Two individuals A and B
from the earliest decle in this study (1820s). 5o selected to breed. A is selected from the top
33% of all individuals and B is selected at random
N from the setof all individuals. A and B are
combined at a randomly chosen splice point to

create two new individual®C and D New
individuals C contain all genes from A before the
splice point and the remaining genes from B. D
receives all genes from B before the splice point

and 1860 do not contain the fourth genre in lateand the remaining from A. The top performer

decades of COHA (newspapers), we excluded this
type of gare from the analysis in order to
maintain balance throughout the entire corpus.

genres. Lastly, we aimed to findelatively even
distribution of word count per year. Thdertified

that no single year would have a significantly

higher or lower word count than others.

3.2 Manual Text Selection

The second step in thiprocess involved the
manual selection of texts. Using the

possible by handpickingxts. Using the dierion
of two million words per genre as the starting
point, werandomlyselected texts from that genre

from the generation is also copied into the new
generation to preserve positive mutation trends.

Next, mutation takes placen newly created
Thirdly, we aimed to have each year in the corpusndividuals. The total number of words in a genre
represented; no single year between 1820 angifferent han the optimal number of words in a
2009 should lack texts from one of the threegenre is calculated. In our case, this was two
million words per genre. Then, iterating over the
vector, each gene is turned on or off with a
probability of 1/n, if flipping the value of the gene
will cause the vector to become closer to the
optimal number of words. After mutation is
completed, the generation is evaluated for fitness
based on the previously discussditness
chronological source list in COHA that contains function The individuals are then sorted by
the year, word count, and genre of each text, wditness score in descending order. Breeding then
attempted to fit the criteria listed above as best asontinues until a certain number of rggations

have been created and evaluated

4 Results

from each year until the total reached as close to

two million words as possible.

3.3 Application of Genetic Algorithm

COHA per year and per genre, and the number of

In Table 1, comparative results are presented on
the fitness scores of 10 runs of the @ging 64
individualsand 1,000 generationalong with the
fitness score for the manual selection. The lower
Next, we set up the genetic algorithm for text the fitness score, the more optimal the selection of
selection. For each decade, we calculated &xts. The minimum score is presented from the
fitness score based on the number of sources igenetic algorithm as well as the average gn)e
fitness score over ten runs.

words per year and per genre, as described in the The GA was able to produce at least one set

previous section.

The algorithm involves n binary vector
individuals of length k which represent possible
selections of texts to include in a balanced
sample size. These individuals undergo three

of texts for each decade that was more optimal
than the handpicked set. In some cases, the

! Code for the algorithm is available here:
https://github.com/corpus-based-research-lab
|
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runs per decade was less optimal than that of the
manual selection. This result occurred in more
recent decades in the 20th century in COHA's set
of texts. In these decades, the-@yduced mean
scores were less optimal than those of the
handpicked set. The reason for this lack of
consistency over the ten runs is most likely the
significantly larger number of texts in COHA
from more recent decades. The 2000s, for
instance, contain3906 different texts, while the

minimum GA-produced score was as much as
82% or 83% better, as in the 1930s or 1940s.
While the GA selected a more optimal set of
texts in all decades at least once, the average
score was not always better than the score for
manual selection. In the 1950s, 1960s, 1970s,
and 2000s, for example, the manual selection
was actually better than the mean fitness score
on ten runs of the GA.

Table 1: Fitness scores by decade

1830s contain only 712 unique texts. The larger

Decade | Manual Best GA- | Mean GA-

selection | produced | produced search space requires more generations or

fitness fitness fitness individuals within each generation of the GA in

score score over | score over order to obtain a better result.

10runs | 10 runs In addition to the improvement of text

igggz 13;411236 éééigoo42 iég?g?d' selection with greater balance an additional
1840s | 233466 | 106483.5 | 164453 advantage gained by using for combinatorial
1850s | 331000 | 7255443 | 145310 optimization is computation time. Manual
1860s 341023 1599689 | 199040 selection of texts in the case of this corpus, for
1870s | 214410 | 96212.33 | 152432 instance, tookthe authorsseveral hars of
1880s 210788 74056.47 | 122584 researchime. Applying the GA b help with this
1890s | 288324 114985.2 | 155776 process greatly shortened the process. The time
1900s | 299384 | 105349.4 | 155031 devoted to each decade varied by the number of
1910s | 220693 | 102385.3 | 128593 texts to analyze, but the process was much faster
igggz 222833 giéggi; gigsgé than during manual selection. For a decade in
1940s | 688920 126513.6 | 306132 COHA with fewer texts (g.g., 1820s), the GA
1950s | 288735 1504776 | 374268 produced result®n averagein 13.25 seconds; a
1960s | 207570 71848.53 | 258747 larger set of texts (e.g., 2000s) took average
1970s | 212580 | 1204384 | 378351 216.35 secondsThese results were compdten
1980s | 322409 84518.17 | 305222 a stock i5 2.6GHz 8Gb ram Microsofti$ace In
1990s | 351593 143293.5 | 207697 comparison to manual selection, the @Grdvduced
2000s | 200915 | 130686 253250 optimization metodsaves significant time.

For the most part, however, the average of 10 run€  €onclusion

of the GA was better than that of the manual
In 15 of the 19 decades, thean
fithess score produced by the GA was better tha@tudies that require a balanced

selection.

that of the manual selection.

score was as muchas 56% better.

5 Discussion

The implications of these findings are that a GA
can be used to solve optimization issues in corpus
longitudinrally

In some decadesbrganized sets of texts with similar word counts
such as the 1850s and 1940s, the average fitness

from evenly digributed time periods. This case
study was conductedn one particular corpus
although the methods are applicable across a
variety of corpora with a range of designs. One of

The results indicate that a GA was useful inthe limitations of the study was that the GA was
dealing withcombinatorial optimization problesn ~inconsistent in producing optal results in some
encountered in text selectionThe GA decades with a significantly greater number of
outperformed manual text selection in at least ondeXts than in others, although the GA could be
run in all decades In most instances, thbest ~Modified in the future by adding more generations
fitness score produced by the GA wasstly a ~ and individuals. ~For the most part, however,
noticeable improvement on that dfet manual findings indicate that this method is partely
selection useful in situations with corpora that include

In some cases, the overall mean score of all teRighly uneversized texts from a variety of genres
and time periods.
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